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SUMMARY

This paper presents an adaptive ®nite element method to solve forced convective heat transfer. Solutions are
obtained in primitive variables using a high-order ®nite element approximation on unstructured grids. Two
general-purpose error estimators are developed to analyse ®nite element solutions and to determine the
characteristics of an improved mesh which is adaptively regenerated by the advancing front method. The
adaptive methodology is validated on a problem with a known analytical solution. The methodology is then
applied to heat transfer predictions for two cases of practical interest. Predictions of the Nusselt number compare
well with measurements and constitute an improvement over previous results. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Heat transfer by forced convection is of practical signi®cance for many systems of engineering

interest. Examples include heat exchangers, cooling processes in nuclear reactors, combustors and

furnaces and cooling of electronic equipment. All these applications present the same challenge for

computational methods: the location and extent of shear and thermal layers and stagnation points are

very dif®cult to determine a priori. The net result is that achieving accurate solutions is very

demanding on the part of the analyst. Furthermore, accurate prediction of the Nusselt number is a

dif®cult task because it requires the computation of the temperature gradient at the wall. It is a well-

known fact that if the temperature is interpolated with an accuracy of O�hn�, the accuracy of its

gradient, and hence of the Nusselt number, will be one order lower, O�hnÿ1�. It follows that while a

mesh may be ®ne enough to yield acceptable velocity and temperature pro®les, it may produce an

insuf®ciently accurate heat ¯ux estimate for practical purposes.

Most of the recent work on adaptive ®nite element methods has focused on improving the
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accuracy of the primary unknowns, i.e. velocity, temperature and pressure. Little has been done to

assess the accuracy of derived ®elds (heat ¯ux, skin friction). This paper focuses on the development

of adaptive ®nite element methods that will result in improved heat ¯ux computations. Such methods

provide a powerful approach for accurately solving such complex problems, because grid points are

automatically clustered in regions of rapid solution variation to improve the accuracy of heat ¯ux

predictions. In the present approach this is done in such a way as to result in a solution that is

uniformly accurate throughout the ¯ow domain. That is, momentum and heat ¯uxes are uniformly

accurate. This tight control on the solution process makes it possible to obtain numerically exact

solutions (grid-independent) to the Navier±Stokes and energy equations. The adaptive process also

turns out to be cost-effective in the sense that the best numerical solution is obtained at nearly

minimal computational cost.

While initial breakthroughs occurred nearly 10 years ago in compressible aerodynamics,1 little

work has been done on incompressible ¯ows and even less on heat transfer problems. Proof-of-

concept computations were reported in References 2 and 3. In References 4±9 the methodology

proposed by the authors was quantitatively validated by solving ¯ows with known analytical

solutions and by computing cases for which experimental measurements were available. Cases

treated covered isothermal laminar ¯ows, heat transfer by free convection, conjugate heat transfer

with variable ¯uid properties and turbulent free shear ¯ows. Validation was done by comparing

predicted and measured velocity and temperature ®elds. This paper presents a rigorous extension of

the methodology to forced convective heat transfer problems, with special emphasis on the effect of

adaption on the accuracy of the Nusselt number prediction.

The paper is organized as follows. First the governing equations and the ®nite element solver are

reviewed. The methodology section describes the two error estimators and the adaptive remeshing

strategy. The proposed methodology is then validated by solving problems with known analytical

solutions to clearly quantify the accuracy improvements due to adaptivity. The method is then applied to

the prediction of heat transfer in a grooved duct and in a suddenly expanded channel with and without cold

¯uid injection. Results are compared with experiments. The paper closes with conclusions.

2. MODELLING OF THE PROBLEM

2.1. Equations of motion

The ¯ow is modelled by the Navier±Stokes, continuity and energy equations written as

ru � Hu � ÿHp� H � t;
H � u � 0;

rcpu � HT � H � q;
�1�

where the stress tensor t is de®ned by

t � m�Hu� �Hu�T� �2�
and q � kHT . Appropriate boundary conditions complete the statement of the problem:

u � u0 on Gu;

t � n̂ÿ pn̂ � t̂ on Gt̂;
�3�

T � T0 on GT ;

kHT � n̂ � qB on Gq;
�4�
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where Gu and GT are the portions of the boundary where Dirichlet conditions are applied. Neumann

conditions are applied on the remaining portions Gt̂ and Gq.

2.2. Finite element solver

The variational equations solved by the ®nite element method are obtained by multiplying the

above equations by appropriate test functions and integrating over the domain of interest. Application

of the divergence theorem to the momentum and temperature diffusion term leads to the weak form

�ruH � u; v� � a�u; v� ÿ �p;H � v� � ht*; vi;
�s;H � u� � 0;

�rcpu � HT ;w� � d�T ;w� � hqB;wi;
�5�

where

a�u; v� �
�
O

t�u� : Hv dO; �6�

d�T ;w� �
�
O

q�T � � Hw dO �7�

and the boundary terms are given by

ht*; vi �
�
@KnGu

�t � n̂ÿ pn̂� � v ds�
�
@K\Gu

t* � v ds; �8�

hqB;wi �
�
@KnGq

q � nw ds�
�
@K\Gq

qBw ds: �9�

These variational equations are solved by a standard Galerkin ®nite element method coupled to an

augmented Lagrangian algorithm to treat the incompressibility.10 The equations are discretized using

the seven-node triangular element which uses an enriched quadratic velocity ®eld, a quadratic

temperature and a linear discontinuous pressure approximation.4,7

3. ADAPTIVE METHODOLOGY

3.1. Generalities

The basic idea behind adaptive methods is to assess the quality of an initial solution obtained on a

coarse mesh by using some form of error estimation and to modify the structure of the numerical

approximation in a systematic fashion so as to improve the overall quality of the solution. There are

several ways of achieving adaptivity: P-methods increase the degree of the polynomial

approximation,11 R-methods relocate grid points12 and H-methods proceed by either mesh

enrichment or remeshing.1,3,4 Combinations such as H±P methods are also becoming popular.

A variant of an H-method, called adaptive remeshing, has been retained because it provides control

of element size and grading to accurately resolve ¯ow features such as shear and thermal layers. In

this method the problem is ®rst solved on a coarse grid to roughly capture the physics of the ¯ow. The

resulting solution is then analysed to determine where more grid points are needed and an improved

mesh is generated. The problem is solved again on the new mesh using the solution obtained on the

coarser mesh as an initial guess. This process is repeated until the required level of accuracy is

achieved.
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Remeshing also offers an elegant and simple approach to use the best-proven ®nite element

approximations in an adaptive context.10,13 This circumvents the problem associated with some P-

methods of satisfying the so-called LBB compatibility condition between the velocity and pressure

approximations while maintaining an optimal convergence rate. It also eliminates the `hanging node

problem' encountered in some H-re®nement methods.3

3.2. Error estimation

This subsection describes two error estimation techniques for assessing the accuracy of the

solutions obtained by the ®nite element solver.

3.2.1. A projection error estimator. This technique was ®rst introduced in Reference 14 and is

based on the observation that the diffusion ¯uxes of the ®nite element solution are discontinuous

across element faces while the exact ¯uxes are continuous. The difference between the two is a

measure of the accuracy of the numerical solution. The exact solution is obviously not known in cases

of practical interest. However, an approximation to the true ¯uxes can be obtained by a least squares

projection of the ®nite element ¯uxes. One can thus recover accurate estimates of the components of

the shear stress tensor and heat ¯ux vector. Let tij and ~tij be the ®nite (raw) and projected stresses.

The least squares projection method seeks a continuous stress that minimizes the integral�
O
�tij ÿ ~tij�2 dO: �10�

The stresses are projected in the space of the velocity interpolation functions so that on each element

one can write

~tij �
P6
iÿ1

fnf�tijgn: �11�

Minimization of (10) leads to the variational equationP
K2T

�
K

fm�tij ÿ ~tij� dO
� �

� 0: �12�

The nodal values of the continuous stresses are then obtained by solving the systemP
K2T

�
K

fmfn dO
� �

f�tijgn �
P

K2T

�
K

fmtij dO
� �

: �13�

The same least squares projection approach is used to obtain a continuous approximation for the

pressure and heat ¯uxes. The raw discontinuous linear pressure is projected in the space of linear

continuous polynomials, while the heat ¯ux is projected in the space of temperature interpolation

functions. The velocity, pressure and temperature contributions to the error are then given by

eu � ~tÿ t; ep � ~pÿ p; eT � ~qÿ q; �14�
where the overtilde denotes a least squares projection.

The combined norms of the velocity, pressure and temperature ®elds and of their errors are

computed using the expressions

k�u; p; T �k � �kuk2
E � kpk20 � kTk2�1=2; �15�

k�eu; ep; eT �k � �keuk2E � kepk20 � keT j2�1=2; �16�
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where the individual norms are de®ned as

kuk2E �
�
O
t : t dO; keuk2E �

�
O

eu : eu dO;

kpk20 �
�
O
jpj2 dO; kepk20 �

�
O
jepj2 dO;

kTk �
�
O

q � q dO; keTk2 �
�
O

eT � eT dO:

�17�

Equation (15) is the so-called natural norm induced by the variational formulation of the problem,

which includes variations in the ¯uid properties. This ensures that mesh re®nement will occur in

regions where heat ¯ux and shear stress variations are signi®cant. It will avoid overre®nement in

cases where temperature and velocity may have steep gradients but ¯uid properties are small enough

such that the heat ¯uxes and stresses show little variation. Notice that the norms used for velocity and

temperature and for their errors involve only their derivatives. This ensures that the norm of the errors

measures the accuracy of the velocity and temperature gradients. This is a natural approach to

measure the accuracy of the skin friction coef®cient and of the Nusselt number predictions.

It should be noted that in the present approach ¯uxes are projected rather than derivatives as is

suggested in Reference 14. This ensures that the error estimator is well behaved in cases where

physical properties are different in adjacent regions of the domain.9 For this case the exact solution

has discontinuous derivatives but a continuous conduction heat ¯ux. Hence only the projection of

¯uxes makes sense in such situations.

3.2.2. A local PDE problem for the error. This approach provides an estimate of the error without

having to solve the global least squares problems required by the previous estimator. Partial

differential equations and their weak forms for the velocity, pressure and temperature errors can be

derived directly from the Navier±Stokes equations.5,15±17 Substitution of uex � uh � eu; pex � ph � ep

and Tex � Th � eT into (5) yields the following variational problems for the errors:

a�eu; v� ÿ �ep;H � v� � ÿa�u; v� � �ÿruh � Huh; v� � �ph;H � v� � h�t � nÿ phn�A; vi@KnGi
� ht̂; vi@\Gi

;

�s;H � eu� � �s;H � uh�;
d�eT ;w� � �ÿrcpuh � HTh;w� ÿ d�Th;w� � hqB;w >@K\GT

� < �qh � n�A;wi@KnGq
:

�18�

The terms in parentheses on the right-hand side represent the element residuals, a measure of the

accuracy of the ®nite element solution inside an element. The terms in brackets are the average

momentum and heat ¯uxes across element faces. The difference between this average value and the

®nite element ¯ux evaluated on the face of the element re¯ects how well the solutions on two

neighbouring elements are matched. The second equation is a measure of mass conservation.

This variational problem is discretized locally on each element. Velocity and temperature errors

are approximated with three quartic bubble functions (associated with the midside nodes of the

triangle) obtained by squaring the midside node quadratic interpolation functions. The pressure error

is approximated with an appropriate bubble function. This results in small 10610 systems of

equations which are inexpensive to solve. The norm of the errors is computed as in the previous

section.
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3.3. Adaptive remeshing

There remains to discuss how one exploits the knowledge of the error estimate distribution to

design a better mesh. The adaptive remeshing strategy is straightforward. It follows that proposed in

References 1, 4 and 5 and proceeds as follows.

1. Generate an initial mesh.

2. Compute ®nite element solution.

3. Compute error estimate.

4. If (global error < tolerance) then

stop

else

compute grid density from error estimate

generate an improved mesh using new grid density

interpolate current solution on new mesh

go to 2

end if.

We now provide some details on this algorithm. Further details can be found in the work of

Zienkiewicz and Zhu.18 The procedure is as follows.

1. A target relative error is selected as Zt%. The requirement is that Z < Zt at the end of the

adaptive analysis.

2. The principle of equidistribution of the error is used to rewrite the above requirement as

keki 4 eav � Zt

kuk2 � kek2
m

� �1=2

; �19�

where m is the number of elements in the mesh, eav is the target element error and keki is the

actual error on element i.

3. Elements with xi � keki=eav > 1 are re®ned, while those with x < 1 are coarsened.

4. The element size required for the new mesh is obtained using the a priori asymptotic rate of

convergence of the method:

d � hi=x
1=p
i ; �20�

where d is the required element size on the new mesh, hi is the current element size and p is the

asymptotic rate of convergence of the ®nite element method. This expression for the element

size can be rewritten as

d � Zt

kuk2 � kek2
m

� �1=2�
keki

" #1=p

hi: �21�

On most meshes the norm of the error is smaller than the norm of the solution, i.e.

kek � kuk; �22�
which leads to the following expression for the new mesh size:

d � Ztkukp
mkeki

� �1=p

hi: �23�

We have described a very similar approach in Reference 4.
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For linear differential operators this approach can in principle yield the required accuracy in one

cycle of adaptation. However, results presented in Reference 18 indicate that this is not always the

case. Dannelongue and Tanguy have observed a similar phenomenon for non-Newtonian ¯ows.19

Their numerical results show that it is more economical and cost-effective to use more than one step

of adaptivity. A one-step remeshing strategy using the above algorithm leads to overly re®ned meshes

in many regions, because the error estimate is necessarily an approximation to the true error. The

error estimate and the rate of convergence of the ®nite element method hold asymptotically, i.e. on

very ®ne meshes. Hence one can expect that the quality of the error estimate will be lower than

expected on coarser meshes. Babuska20 presents a theoretical analysis supporting this observation. He

shows that introducing an intermediate step leads to a ®nal mesh with fewer nodes to achieve the

present level of accuracy Zt.

Dannelongue and Tanguy19 apply this procedure recursively and use a sequence of meshes

designed to achieve 12%, 1% and ®nally 0�1% relative error. Their transition operator, used to design

the new mesh, is written as

di �
�e

keik
� �1=p

hi �24�

and can by termed a `®xed target' transition operator since the target Zt is ®xed at the beginning of the

adaptive process. The strategy proposed by Dannelongue and Tanguy amounts to changing Zt from

one remeshing to the next. This is equivalent to reducing eav by a predetermined factor. In Reference

18 this factor is approximately 10.

In the present work we adopt a similar approach. The element target error is de®ned as

�e � rkek=pn; �25�
where r is the error reduction factor, kek is the global error estimate and n is the number of elements

in the mesh. After some manipulation we obtain the following expression for the new mesh size:

di �
rkekp
nkeik

� �1=p

hi: �26�

We call this a `reduction' transition operator since it attempts to reduce the total error by a factor r at

each cycle of adaptation.

Both transition operators can be obtained from the expression

di �
�e

keik
� �1=p

hi �27�

by de®ning �e appropriately as follows:

(a) ®xed target operator, �e � �Zkuk=pn.

(b) reduction operator, �e � rkek=pn.

As can be seen, for any target Zt in the ®xed target operator there corresponds a value of r which

will yield the same results using the reduction operator. In the present work we use values of r

ranging from 0�5 to 0�3 which produce more gradual mesh re®nement than the proposal of Reference

18. Our approach has proven to be especially cost-effective for solving steady state convection-

dominated Navier±Stokes ¯ows, because most of the iterations for non-linearities are carried out on

the coarser meshes. The proposed more gradual approach produces two bene®ts. First, the ®nal mesh

has fewer nodes for the same accuracy achieved with a single step of adaptive remeshing. Second, the

total cost for obtaining the solution on the ®nal mesh is much lower that in the single-step approach.

See Reference 4 for sample timings supporting this observation.
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4. VALIDATION

The two error estimators are ®rst compared on a simple ¯ow problem for which an analytical solution

is known. This provides controlled conditions to validate the proposed adaptive strategy and assess its

computational performance.

The analytical solution of the problem was taken to be

u � 1ÿ y2; v � 0; p � x;

T � �cosh aÿ cosh�ay��=�cosh aÿ 1�: �28�

The constant a controls the thickness of the thermal boundary layer. In this problem only the

temperature ®eld will contribute to the error, since the ®nite element approximation provides an exact

representation of the velocity and pressure ®elds. The problem is solved on the unit square. The

adaptive strategy is set to reduce the computed error by a factor of three at each cycle. Tables I and II

illustrate the performance of the adaptive strategy for both the projection and local problem error

estimators. As can be seen, both the true error and its estimate are reduced at each cycle. Hence, the

solution accuracy improves steadily at each adaptation cycle. In general, starting from a coarse mesh

and requesting a reduction of the error estimate by a factor of three at each cycle, one usually obtains

an order-of-magnitude reduction of the true error after three cycles. One seldom obtains a reduction

by a factor of 27 (33) on the third mesh, because the asymptotic rate of convergence of the ®nite

element method does not formally hold on the initial coarse grid. This rate is achieved only for ®ner

meshes (hence the quali®er asymptotic). In practice the factor of three is nearly recovered when the

initial mesh is ®ne enough or if further cycles of adaptations are performed.

As can be seen, both methods lead to comparable meshes and true errors of similar magnitude.

Note, however, that the local problem approach produces more accurate error estimates. This

approach was originally introduced as a cost-effective alternative to the projection method since it

does not involve the solution of the global least squares problem. However, in practice the higher-

order Gaussian quadrature rules required to evaluate the coef®cients of the 10610 system makes this

approach somewhat more expensive than the projection method.

5. APPLICATION

5.1. Forced convection with transverse injection in a sudden expansion

This con®guration, studied in Reference 21, is shown in Figure 1. Laminar ¯ow enters the

backward-facing step whose bottom walls (2 and 5) and step (3) are heated at a constant temperature.

The top wall is adiabatic and ¯uid can be injected with a velocity vj at the base of the step through an

opening (4). Simulations were performed for the two cases studied in Reference 21 at a Reynolds

number of 100: 1, forced convection, no injection, vj � 0; 2, forced convection with injection,

vj � 0�2.

Table I. 1D case, projection estimator

No. of No. of Error True
Mesh nodes elements estimate error

0 347 106 0�03327 0�1070
1 587 187 0�009959 0�03079
2 1135 361 0�006189 0�01412
3 1589 514 0�003254 0�007732
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Case 1. No Injection. Figure 2 shows the sequence of meshes generated by the adaptive strategy set

to reduce the error by a factor of three at each cycle of adaptation. As can be seen, the grid is

progressively re®ned in the thermal layer on the bottom wall upstream of the step and in the shear

layers present on the top wall and emanating from the corner. The isotherms and streamlines shown

in Figure 3 are in excellent agreement with those of Soong and Hsueh.21

Table II. 1D case, local problem estimator

No. of No. of Error True
Mesh nodes elements estimate error

0 347 106 0�09737 0�1070
1 421 134 0�02924 0�04832
2 945 306 0�01264 0�01831

Figure 1. Forced convection with injection: computational domain

Figure 2. Meshes generated for Case 1: no injection
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Figure 3. Final mesh, isotherms and streamlines for Case 1

Figure 4. Meshes generated for Case 2: with injection
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Case 2. Forced convection with cold ¯uid injection. Fluid is injected vertically at the base of the

step with a velocity vj � 0�2 �U , where �U is the mean velocity at the channel in¯ow. Meshes are

shown in Figure 4 and isotherms and streamlines in Figure 5. As can be seen, re®nement occurs near

the corner, near the injection point and on the base of the step where ¯uid injection causes a thin wall

shear layer.

The isotherms show the signi®cant cooling effect due to injection. The streamline plot also shows

the changes in the shape, extent and topology of the recirculation zone. Figures 6 and 7 compare the

Nusselt number predictions obtained on the adaptively generated meshes with and without injection

respectively. As can be seen, grid-independent results have been obtained at the third cycle of

adaptation.

5.2. Forced convection in a grooved duct

This con®guration was studied experimentally and numerically in Reference 22. Figure 8 presents

a sketch of the domain with boundary conditions. The channel walls are maintained at constant but

different temperatures. The grooved wall on top is heated, while the bottom wall is maintained at the

inlet temperature.

The problem results in a thermal boundary layer that is periodically interrupted by grooves. The

¯ow separates leaving recirculation zones inside the grooves so that the thermal boundary layer must

redevelop after each groove. The effect is to increase the heat transfer coef®cient when compared

with the parallel plate duct case. The grooves have an aspect ratio w=h � 4, where h is half the height

of the duct. The Reynolds number is based on the mean velocity um and the hydraulic diameter

Figure 5. Final mesh, isotherms and streamlines for Case 2
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Figure 6. Nusselt number distribution for Case 1: no
injection

Figure 7. Nusselt number distribution for Case 2: with
injection
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Dh � 6h. Simulations were performed for air �Pr � 0�72� at different Reynolds numbers ranging

from 620 to 1760.

Solutions have been obtained on adaptive meshes by using both the postprocessing and local

problem error estimators. Tables III±X summarize the performance of the adaptivity strategy for

Reynolds numbers of 620, 1076, 1481 and 1760. Both estimators produce a reduction of the error at

each cycle by a factor which is not too far from the requested value of three. Hence the solution

accuracy improves steadily at each adaptation cycle.

Figures 9±12 show for each Reynolds number the initial and ®nal meshes, along with streamlines

and contour plots of the temperature. As can be seen, the shear and boundary thermal layers become

thinner with increasing Reynolds number.

Figure 8. Grooved duct: computational domain and boundary conditions

Table III. Grooved duct, Re� 620, projection estimator

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 1�165 1�40061072

1 1668 777 1�169 5�85961073

2 2508 1179 1�158 3�13861073

3 4111 1962 1�153 1�61561073

4 7313 3538 1�152 8�75861074

Table V. Grooved duct, Re� 1076, projection estimator

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 0�6775 9�73361073

1 1527 704 0�6808 4�11661073

2 2677 1248 0�6738 1�69961073

3 4837 2292 0�6670 8�52861074

4 8784 4207 0�6667 4�25161074

Table IV. Grooved duct, Re� 620, local problem

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 1�165 1�29061072

1 1514 699 1�158 5�25861073

2 2575 1204 1�161 2�68961073

3 4436 2101 1�152 1�29961073

4 8303 3982 1�152 6�23961074
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Table VI. Grooved duct, Re� 1076, local problem

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 0�6775 1�61561072

1 1734 805 0�6746 7�66761073

2 2558 1209 0�6761 4�33461073

3 3714 1773 0�6690 1�78261073

4 6308 3045 0�6668 8�61161074

Table VII. Grooved duct, Re� 1481, projection estimator

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 0�4913 8�76261073

1 1591 734 0�4872 6�48361073

2 1967 908 0�4863 2�35761073

3 3681 1732 0�4883 1�09961073

4 6352 3029 0�4840 5�29461074

Table VIII. Grooved duct, Re� 1481, local problem

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 0�4913 1�80261072

1 1861 868 0�4989 8�92661073

2 2516 1191 0�4915 4�20861073

3 3708 1775 0�4840 1�93161073

4 6211 3004 0�4846 9�62861074

Table IX. Grooved duct, Re� 1760, projection estimator

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 0�4133 8�39561073

1 1628 751 0�4144 5�74161073

2 2168 1003 0�4082 2�38361073

3 4012 1899 0�4090 1�20761073

4 6064 2891 0�4067 5�45061074

Table X. Grooved duct, Re� 1760, local problem

No. of No. of Solution Error
Mesh nodes elements norm estimate

0 1040 449 0�4133 1�91561072

1 1875 874 0�4146 9�11861073

2 2889 1372 0�4143 4�42161073

3 4368 2101 0�4097 1�80361073

4 7044 3421 0�4074 1�00861073
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Figures 13±15 show predictions of the Nusselt number along the grooved wall, along with the

computations and measurements of Farhanieh et al.22 As can be seen, grid-independent results have

been obtained for all cases studied. Furthermore, predictions compare extremely well with

measurements. This is especially evident near the protruding and re-entrant corners. The sharp

increase in Nusselt number near the upstream-facing corners is very well captured. This is especially

true at higher Reynolds numbers. The case of the re-entrant corner is also very indicative of the

performance of the adaptive strategy. Because the temperature is constant on the heated wall, the

Nusselt number must be zero at the top corners of the groove. The predicted values capture this

measured phenomenon very well: sharp peaks and dips are very well reproduced by the present

Figure 9. First and ®nal meshes, streamlines and temperature contours, Re � 620

Figure 10. First and ®nal meshes, streamlines and temperature contours, Re � 1076
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method, while the ®nite volume method of Farhanieh et al.22 totally misses the peaks and dips for all

Reynolds numbers except the lowest one.

5.3. Computational ef®ciency

Results presented in the preceding subsection illustrate the improved resolution that can be

achieved with adaptivity. The proposed adaptive strategy also results in a cost-effective solution

algorithm that is well worth the added complexity. Table XI contains computational statistics

obtained on an IBM E=S 9000 with vector facility, for forced convection without injection, using the

Figure 11. First and ®nal meshes, streamlines and temperature contours, Re � 1481

Figure 12. First and ®nal meshes,a streamlines and temperature contours Re � 1760

818 D. PELLETIER, F. ILINCA AND EÂ . TURGEON

INT. J. NUMER. METH. FLUIDS, VOL. 25: 803±823 (1997) # 1997 John Wiley & Sons, Ltd.



Figure 13. Local Nusselt number distribition on heated wall, Re � 620: (a) global view; (b) detail of distribution

Table XI. Computational statistics for adaptation

No. of Meshing Solution Adaptation
Cycle iterations (s) (s) (s)

0 10 0�27 4�50 0�70
1 6 1�21 9�82 1�50
2 4 2�00 19�91 3�11
3 4 3�79 63�39 6�43
4 3 8�05 80�50 12�15
5 3 18�93 465�61 32�61
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projection estimator. Timings, in seconds, include all aspects of computations (grid generation, ¯ow

solution, error estimation and interpolation of the solution between grids).

Computation of the error estimate represents typically less than 5% of the cost of obtaining a

solution on a given mesh. Complete solution of this problem required a total of 735 CPU seconds.

Solving the same problem directly on the ®nal mesh without using intermediate grids would have

required approximately 1550 CPU seconds.

It should also be noted that without adaptivity it would have been nearly impossible to generate a

grid leading to comparable accuracy without at least doubling the number of grid points on the ®nal

Figure 14. Local Nusselt number distribution on heated wall, Re � 1076: (a) global view; (b) detail of distribution
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mesh. In fact, it is very dif®cult to achieve a good allocation of grid points without the extra

knowledge gained from the error estimates. Given that Gaussian elimination is used at each Newton

iteration, the increase in computational cost is proportional to the cube of the number of grid points. It

follows that non-adaptive computations of comparable accuracy would have been far more expensive

than adaptive ones (our experience indicates that a factor of ®ve is realistic and is a conservative

estimate).

Figure 15. Local Nusselt number distribution on heated wall, Re � 1481: (a) global view; (b) detail of distribution
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6. CONCLUSIONS

An adaptive remeshing ®nite element procedure has been presented for solving forced convective

heat transfer problems. The two error estimators presented have proven reliable and convergent on

problems with known analytical solutions. Both estimators are sensitive to hydrodynamic and thermal

layers. The adaptive procedure has proven robust and can be used effectively in a black-box fashion

with little or no intervention on the part of the user. Predictions of Nusselt number distributions are in

excellent agreement with experiment and constitute an improvement over other traditional

computations.
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